SliceNet: Deep Dense Depth Estimation from a Single Indoor Panorama using a Slice-based Representation

Giovanni Pintore, Marco Agus, Eva Almansa, Jens Schneider, Enrico Gobbetti

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

83 Citations (Scopus)

Abstract

We introduce a novel deep neural network to estimate a depth map from a single monocular indoor panorama. The network directly works on the equirectangular projection, exploiting the properties of indoor 360 images. Starting from the fact that gravity plays an important role in the design and construction of man-made indoor scenes, we propose a compact representation of the scene into vertical slices of the sphere, and we exploit long- and short-term relationships among slices to recover the equirectangular depth map. Our design makes it possible to maintain high-resolution information in the extracted features even with a deep network. The experimental results demonstrate that our method outperforms current state-of-the-art solutions in prediction accuracy, particularly for real-world data.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PublisherIEEE Computer Society
Pages11531-11540
Number of pages10
ISBN (Electronic)9781665445092
DOIs
Publication statusPublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States
Duration: 19 Jun 202125 Jun 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
Country/TerritoryUnited States
CityVirtual, Online
Period19/06/2125/06/21

Fingerprint

Dive into the research topics of 'SliceNet: Deep Dense Depth Estimation from a Single Indoor Panorama using a Slice-based Representation'. Together they form a unique fingerprint.

Cite this