Renal fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron

Camille Ansermet, Matthias B. Moor, Gabriel Centeno, Muriel Auberson, Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva, Barbara Haenzi, Natalya Katanaeva, Ivan Gautschi, Vladimir Katanaev, Samuel Rotman, Robert Koesters, Laurent Schild, Sylvain Pradervand, Olivier Bonny, Dmitri Firsov*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is critical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the molecular identity of the protein(s) participating in the basolateral Pi efflux remains unknown. Evidence has suggested that xenotropic and polytropic retroviral receptor 1 (XPR1) might be involved in this process. Here, we show that conditional inactivation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi reabsorption. Analysis of Pi transport in primary cultures of proximal tubular cells or in freshly isolated renal tubules revealed that this Xpr1 deficiency significantly affected Pi efflux. Further, mice with conditional inactivation of Xpr1 in the renal tubule exhibited generalized proximal tubular dysfunction indicative of Fanconi syndrome, characterized by glycosuria, aminoaciduria, calciuria, and albuminuria. Dramatic alterations in the renal transcriptome, including a significant reduction in NaPi-IIa/NaPi-IIc expression, accompanied these functional changes. Additionally, Xpr1-deficient mice developed hypophosphatemic rickets secondary to renal dysfunction. These results identify XPR1 as amajor regulator of Pi homeostasis and as a potential therapeutic target in bone and kidney disorders.

Original languageEnglish
Pages (from-to)1073-1078
Number of pages6
JournalJournal of the American Society of Nephrology
Volume28
Issue number4
DOIs
Publication statusPublished - Apr 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Renal fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron'. Together they form a unique fingerprint.

Cite this