Abstract
As has been the case in North America and western Europe, the <span classCombining double low line"inline-formula">SO2</span> emissions have substantially reduced in the North China Plain (NCP) in recent years. Differential rates of reduction in <span classCombining double low line"inline-formula">SO2</span> and <span classCombining double low line"inline-formula">NOx</span> concentrations result in the frequent occurrence of particulate matter pollution dominated by nitrate (<span classCombining double low line"inline-formula"><math xmlnsCombining double low line"http://www.w3.org/1998/Math/MathML" idCombining double low line"M4" displayCombining double low line"inline" overflowCombining double low line"scroll" dspmathCombining double low line"mathml"><mrow classCombining double low line"chem"><mi>p</mi><msubsup><mi mathvariantCombining double low line"normal">NO</mi><mn mathvariantCombining double low line"normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svgCombining double low line"http://www.w3.org/2000/svg" widthCombining double low line"32pt" heightCombining double low line"16pt" classCombining double low line"svg-formula" dspmathCombining double low line"mathimg" md5hashCombining double low line"80301589dd125f3933fea08fd04566b2"><svg:image xmlns:xlinkCombining double low line"http://www.w3.org/1999/xlink" xlink:hrefCombining double low line"acp-20-2161-2020-ie00001.svg" widthCombining double low line"32pt" heightCombining double low line"16pt" srcCombining double low line"acp-20-2161-2020-ie00001.png"/></svg:svg></span></span>) over the NCP. In this study, we observed a polluted episode with the particulate nitrate mass fraction in nonrefractory PM<span classCombining double low line"inline-formula">1</span> (NR-PM<span classCombining double low line"inline-formula">1</span>) being up to 44 % during wintertime in Beijing. Based on this typical <span classCombining double low line"inline-formula"><math xmlnsCombining double low line"http://www.w3.org/1998/Math/MathML" idCombining double low line"M7" displayCombining double low line"inline" overflowCombining double low line"scroll" dspmathCombining double low line"mathml"><mrow classCombining double low line"chem"><mi>p</mi><msubsup><mi mathvariantCombining double low line"normal">NO</mi><mn mathvariantCombining double low line"normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svgCombining double low line"http://www.w3.org/2000/svg" widthCombining double low line"32pt" heightCombining double low line"16pt" classCombining double low line"svg-formula" dspmathCombining double low line"mathimg" md5hashCombining double low line"97eee6abb7442c3dca576c5397fcf50b"><svg:image xmlns:xlinkCombining double low line"http://www.w3.org/1999/xlink" xlink:hrefCombining double low line"acp-20-2161-2020-ie00002.svg" widthCombining double low line"32pt" heightCombining double low line"16pt" srcCombining double low line"acp-20-2161-2020-ie00002.png"/></svg:svg></span></span>-dominated haze event, the linkage between aerosol water uptake and <span classCombining double low line"inline-formula"><math xmlnsCombining double low line"http://www.w3.org/1998/Math/MathML" idCombining double low line"M8" displayCombining double low line"inline" overflowCombining double low line"scroll" dspmathCombining double low line"mathml"><mrow classCombining double low line"chem"><mi>p</mi><msubsup><mi mathvariantCombining double low line"normal">NO</mi><mn mathvariantCombining double low line"normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svgCombining double low line"http://www.w3.org/2000/svg" widthCombining double low line"32pt" heightCombining double low line"16pt" classCombining double low line"svg-formula" dspmathCombining double low line"mathimg" md5hashCombining double low line"bf993075addbdcb9c5e94dd00bb6267c"><svg:image xmlns:xlinkCombining double low line"http://www.w3.org/1999/xlink" xlink:hrefCombining double low line"acp-20-2161-2020-ie00003.svg" widthCombining double low line"32pt" heightCombining double low line"16pt" srcCombining double low line"acp-20-2161-2020-ie00003.png"/></svg:svg></span></span> enhancement, further impacting on visibility degradation, has been investigated based on field observations and theoretical calculations. During haze development, as ambient relative humidity (RH) increased from <span classCombining double low line"inline-formula">ĝ1/410</span> % to 70 %, the aerosol particle liquid water increased from <span classCombining double low line"inline-formula">ĝ1/41</span> <span classCombining double low line"inline-formula">μg m-3</span> at the beginning to <span classCombining double low line"inline-formula">ĝ1/475</span> <span classCombining double low line"inline-formula">μg m-3</span> in the fully developed haze period. The aerosol liquid water further increased the aerosol surface area and volume, enhancing the condensational loss of <span classCombining double low line"inline-formula">N2O5</span> over particles. From the beginning to the fully developed haze, the condensational loss of <span classCombining double low line"inline-formula">N2O5</span> increased by a factor of 20 when only considering aerosol surface area and volume of dry particles, while increasing by a factor of 25 when considering extra surface area and volume due to water uptake. Furthermore, aerosol liquid water favored the thermodynamic equilibrium of <span classCombining double low line"inline-formula">HNO3</span> in the particle phase under the supersaturated <span classCombining double low line"inline-formula">HNO3</span> and <span classCombining double low line"inline-formula">NH3</span> in the atmosphere. All the above results demonstrated that <span classCombining double low line"inline-formula"><math xmlnsCombining double low line"http://www.w3.org/1998/Math/MathML" idCombining double low line"M19" displayCombining double low line"inline" overflowCombining double low line"scroll" dspmathCombining double low line"mathml"><mrow classCombining double low line"chem"><mi>p</mi><msubsup><mi mathvariantCombining double low line"normal">NO</mi><mn mathvariantCombining double low line"normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svgCombining double low line"http://www.w3.org/2000/svg" widthCombining double low line"32pt" heightCombining double low line"16pt" classCombining double low line"svg-formula" dspmathCombining double low line"mathimg" md5hashCombining double low line"90de1192fbdc093890377c47914f9681"><svg:image xmlns:xlinkCombining double low line"http://www.w3.org/1999/xlink" xlink:hrefCombining double low line"acp-20-2161-2020-ie00004.svg" widthCombining double low line"32pt" heightCombining double low line"16pt" srcCombining double low line"acp-20-2161-2020-ie00004.png"/></svg:svg></span></span> is enhanced by aerosol water uptake with elevated ambient RH during haze development, in turn facilitating the aerosol take-up of water due to the hygroscopicity of particulate nitrate salt. Such mutual promotion between aerosol particle liquid water and particulate nitrate enhancement can rapidly degrade air quality and halve visibility within 1 d. Reduction of nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is essential in mitigating severe haze events in the NCP.
| Original language | English |
|---|---|
| Pages (from-to) | 2161-2175 |
| Number of pages | 15 |
| Journal | Atmospheric Chemistry and Physics |
| Volume | 20 |
| Issue number | 4 |
| DOIs | |
| Publication status | Published - 26 Feb 2020 |
| Externally published | Yes |