Projects per year
Abstract
Outpatient Chemotherapy Appointment (OCA) planning and scheduling is a process of distributing appointments to available days and times to be handled by various resources through a multi-stage process. Proper OCAs planning and scheduling results in minimizing the length of stay of patients and staff overtime. The integrated consideration of the available capacity, resources planning, scheduling policy, drug preparation requirements, and resources-to-patients assignment can improve the Outpatient Chemotherapy Process’s (OCP’s) overall performance due to interdependencies. However, developing a comprehensive and stochastic decision support system in the OCP environment is complex. Thus, the multi-stages of OCP, stochastic durations, probability of uncertain events occurrence, patterns of patient arrivals, acuity levels of nurses, demand variety, and complex patient pathways are rarely addressed together. Therefore, this paper proposes a clustering and stochastic optimization methodology to handle the various challenges of OCA planning and scheduling. A Stochastic Discrete Simulation-Based Multi-Objective Optimization (SDSMO) model is developed and linked to clustering algorithms using an iterative sequential approach. The experimental results indicate the positive effect of clustering similar appointments on the performance measures and the computational time. The developed cluster-based stochastic optimization approaches showed superior performance compared with baseline and sequencing heuristics using data from a real Outpatient Chemotherapy Center (OCC).
| Original language | English |
|---|---|
| Article number | 15539 |
| Journal | International Journal of Environmental Research and Public Health |
| Volume | 19 |
| Issue number | 23 |
| DOIs | |
| Publication status | Published - Dec 2022 |
Keywords
- artificial intelligence
- cancer
- clustering
- decision-making metaheuristics
- multi objectives
- oncology health care
- outpatient chemotherapy
- planning
- scheduling
- stochastic simulation-based optimization
Fingerprint
Dive into the research topics of 'Clustering and Stochastic Simulation Optimization for Outpatient Chemotherapy Appointment Planning and Scheduling'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EX-QNRF-NPRPS-4: An Operations Management Approach for the Improvement of Cancer Care Delivery in Qatar: Predictive Models, Analysis, and Pathways Optimization for Patients with Hematological Malignancies.
Kerbache, L. (Principal Investigator), Alam, T. (Principal Investigator), Elomri, A. (Lead Principal Investigator), Padmanabhan, R. (Post Doctoral Fellow), Hadid, M. (Graduate Student), El Alaoui, Y. (Graduate Student), Abouelkheir, H. (Graduate Student), Khedr, A. (Graduate Student), Assistant-1, R. (Research Assistant), Assistant-5, R. (Research Assistant), Hamad, D. A. (Principal Investigator), Taha, D. R. (Principal Investigator), OMRI, P. H. E. (Principal Investigator), Jouini, P. O. (Principal Investigator), Al-Thani, D. M. (Principal Investigator) & Al-Thani, D. M. (Principal Investigator)
5/04/20 → 24/05/24
Project: Applied Research