TY - GEN
T1 - A low-complexity approach for sum-rate maximization in cooperative NOMA enhanced cellular networks
AU - Dinh, Phuc
AU - Arfaoui, Mohamed Amine
AU - Sharafeddine, Sanaa
AU - Assi, Chadi
AU - Ghrayeb, Ali
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/6
Y1 - 2020/6
N2 - This paper investigates the performance of cooperative non-orthogonal multiple access (C-NOMA) in a cellular downlink system. The system model consists of a base station (BS) serving multiple users, where users that have the capability of full-duplex (FD) communications can assist the transmissions between the BS and users with poor channel quality through device-to-device (D2D) communications. To maximize the achievable sum rate of the whole system while guaranteeing a certain quality of service (QoS) for all users, we formulate and solve a novel optimization problem that jointly determines the optimal D2D user pairing and the optimal power control scheme. The formulated problem is a mixed-integer non-linear program (MINLP), which has extremely high complexity. To overcome this issue, a two-step policy is proposed to solve the problem in polynomial time. First, we derive a closed-form expression of the optimal power control scheme that maximizes the sum rate of a given pair of users with a required QoS. Then, using the derived closed-form in the first step, we employ the Hungarian algorithm as the pairing policy in multi-user settings. Our simulation results show that the proposed scheme prevails some previously proposed heuristic approach for the given problem.
AB - This paper investigates the performance of cooperative non-orthogonal multiple access (C-NOMA) in a cellular downlink system. The system model consists of a base station (BS) serving multiple users, where users that have the capability of full-duplex (FD) communications can assist the transmissions between the BS and users with poor channel quality through device-to-device (D2D) communications. To maximize the achievable sum rate of the whole system while guaranteeing a certain quality of service (QoS) for all users, we formulate and solve a novel optimization problem that jointly determines the optimal D2D user pairing and the optimal power control scheme. The formulated problem is a mixed-integer non-linear program (MINLP), which has extremely high complexity. To overcome this issue, a two-step policy is proposed to solve the problem in polynomial time. First, we derive a closed-form expression of the optimal power control scheme that maximizes the sum rate of a given pair of users with a required QoS. Then, using the derived closed-form in the first step, we employ the Hungarian algorithm as the pairing policy in multi-user settings. Our simulation results show that the proposed scheme prevails some previously proposed heuristic approach for the given problem.
KW - Cooperative NOMA
KW - Device-to-device communication
KW - Power control
UR - https://www.scopus.com/pages/publications/85090271232
U2 - 10.1109/ICCWorkshops49005.2020.9145440
DO - 10.1109/ICCWorkshops49005.2020.9145440
M3 - Conference contribution
AN - SCOPUS:85090271232
T3 - 2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings
BT - 2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE International Conference on Communications Workshops, ICC Workshops 2020
Y2 - 7 June 2020 through 11 June 2020
ER -