TY - JOUR
T1 - A Channel State Information-Based Key Generation Scheme for Internet of Things
AU - Usman, Muhammad
AU - Althunibat, Saud
AU - Qaraqe, Marwa
N1 - Publisher Copyright:
© 2022 Muhammad Usman et al.
PY - 2022
Y1 - 2022
N2 - Internet-of-Things (IoT) networks generally contain resource-constrained devices that require an energy-efficient key generation procedure to producing secure keys at a faster rate. The physical characteristics of the wireless channel can be exploited to secure communication within IoT networks. In particular, secret keys can be generated by leveraging on the randomness of the wireless physical channel between two communicating parties. The conventional mechanism of generating keys at the physical layer, i.e., using channel probing, quantization, information reconciliation, and privacy amplification, may not be preferable for IoT devices. In addition, in some cases IoT devices may be deployed in static environments, wherein the channel coherence time is too high to generate keys at a faster rate and with the desired randomness. This study proposes a mapping table-based key distribution scheme for IoT environments, wherein multiple characteristics of the random channel are combined to improve not only the key generation rate (KGR) but also the key agreement rate (KAR) and bit error rate (BER). In the proposed scheme, both the channel magnitude and the phase are exploited in the key generation process. The proposed scheme is immune to channel estimation errors while providing sufficient randomness in the static environment. Additionally, the scheme is thoroughly investigated for different scenarios including the case of a smarter eavesdropper, which attempts to estimate the channel between the legitimate nodes. This case verifies the robustness of the proposed scheme in different settings and attack models.
AB - Internet-of-Things (IoT) networks generally contain resource-constrained devices that require an energy-efficient key generation procedure to producing secure keys at a faster rate. The physical characteristics of the wireless channel can be exploited to secure communication within IoT networks. In particular, secret keys can be generated by leveraging on the randomness of the wireless physical channel between two communicating parties. The conventional mechanism of generating keys at the physical layer, i.e., using channel probing, quantization, information reconciliation, and privacy amplification, may not be preferable for IoT devices. In addition, in some cases IoT devices may be deployed in static environments, wherein the channel coherence time is too high to generate keys at a faster rate and with the desired randomness. This study proposes a mapping table-based key distribution scheme for IoT environments, wherein multiple characteristics of the random channel are combined to improve not only the key generation rate (KGR) but also the key agreement rate (KAR) and bit error rate (BER). In the proposed scheme, both the channel magnitude and the phase are exploited in the key generation process. The proposed scheme is immune to channel estimation errors while providing sufficient randomness in the static environment. Additionally, the scheme is thoroughly investigated for different scenarios including the case of a smarter eavesdropper, which attempts to estimate the channel between the legitimate nodes. This case verifies the robustness of the proposed scheme in different settings and attack models.
UR - https://www.scopus.com/pages/publications/85130932787
U2 - 10.1155/2022/7976319
DO - 10.1155/2022/7976319
M3 - Article
AN - SCOPUS:85130932787
SN - 1939-0114
VL - 2022
JO - Security and Communication Networks
JF - Security and Communication Networks
M1 - 7976319
ER -